694 research outputs found

    Interspecific visual signalling in animals and plants: a functional classification

    Get PDF
    Organisms frequently gain advantages when they engage in signalling with individuals of other species. Here we provide a functionally structured framework of the great variety of interspecific visual signals seen in nature, then describe the different signalling mechanisms that have evolved in response to each of these functional requirements. We propose that interspecific visual signalling can be divided into six major functional categories: antipredator, food acquisition, antiparasite, host acquisition, reproductive, and agonistic signalling, with each function enabled by several distinct mechanisms. We support our classification by reviewing the ecological and behavioural drivers of interspecific signalling in animals and plants, principally focussing on comparative studies that address large-scale patterns of diversity. Collating diverse examples of interspecific signalling into an organised set of functional and mechanistic categories places anachronistic behavioural and morphological labels in fresh context, clarifies terminology, and redirects research effort towards understanding environmental influences driving interspecific signalling in nature

    Correction:Zebra stripes through the eyes of their predators, zebras, and humans

    Get PDF
    The century-old idea that stripes make zebras cryptic to large carnivores has never been examined systematically. We evaluated this hypothesis by passing digital images of zebras through species-specific spatial and colour filters to simulate their appearance for the visual systems of zebras' primary predators and zebras themselves. We also measured stripe widths and luminance contrast to estimate the maximum distances from which lions, spotted hyaenas, and zebras can resolve stripes. We found that beyond ca. 50 m (daylight) and 30 m (twilight) zebra stripes are difficult for the estimated visual systems of large carnivores to resolve, but not humans. On moonless nights, stripes are difficult for all species to resolve beyond ca. 9 m. In open treeless habitats where zebras spend most time, zebras are as clearly identified by the lion visual system as are similar-sized ungulates, suggesting that stripes cannot confer crypsis by disrupting the zebra's outline. Stripes confer a minor advantage over solid pelage in masking body shape in woodlands, but the effect is stronger for humans than for predators. Zebras appear to be less able than humans to resolve stripes although they are better than their chief predators. In conclusion, compared to the uniform pelage of other sympatric herbivores it appears highly unlikely that stripes are a form of anti-predator camouflage

    Ecological Drivers of Habitat Use by Meso Mammals in a Miombo Ecosystem in the Issa Valley, Tanzania

    Get PDF
    Vast stretches of East and Southern Africa are characterized by a mosaic of deciduous woodlands and evergreen riparian forests, commonly referred to as “miombo,” hosting a high diversity of plant and animal life. However, very little is known about the communities of small-sized mammals inhabiting this heterogeneous biome. We here document the diversity and abundance of 0.5–15 kg sized mammals (“meso-mammals”) in a relatively undisturbed miombo mosaic in western Tanzania, using 42 camera traps deployed over a 3 year-period. Despite a relatively low diversity of meso-mammal species (n = 19), these comprised a mixture of savanna and forest species, with the latter by far the most abundant. Our results show that densely forested sites are more intensely utilized than deciduous woodlands, suggesting riparian forest within the miombo matrix might be of key importance to meso-mammal populations. Some species were captured significantly more often in proximity to (and sometimes feeding on) termite mounds (genus Macrotermes), as they are a crucial food resource. There was some evidence of temporal partitioning in activity patterns, suggesting hetero-specific avoidance to reduce foraging competition. We compare our findings to those of other miombo sites in south-central Africa

    Physiology, behavior, and conservation

    Get PDF
    Many animal populations are in decline as a result of human activity. Conservation practitioners are attempting to prevent further declines and loss of biodiversity as well as to facilitate recovery of endangered species, and they often rely on interdisciplinary approaches to generate conservation solutions. Two recent interfaces in conservation science involve animal behavior (i.e., conservation behavior) and physiology (i.e., conservation physiology). To date, these interfaces have been considered separate entities, but from both pragmatic and biological perspectives, there is merit in better integrating behavior and physiology to address applied conservation problems and to inform resource management. Although there are some institutional, conceptual, methodological, and communication-oriented challenges to integrating behavior and physiology to inform conservation actions, most of these barriers can be overcome. Through outlining several successful examples that integrate these disciplines, we conclude that physiology and behavior can together generate meaningful data to support animal conservation and management actions. Tangentially, applied conservation and management problems can, in turn, also help advance and reinvigorate the fundamental disciplines of animal physiology and behavior by providing advanced natural experiments that challenge traditional frameworks

    Modelling habitat conversion in miombo woodlands : Insights from Tanzania

    Get PDF
    <p>Understanding the drivers of natural habitat conversion is a major challenge, yet predicting where future losses may occur is crucial to preventing them. Here, we used Bayesian analysis to model spatio-temporal patterns of land-use/cover change in two protected areas designations and unclassified land in Tanzania using time-series satellite images. We further investigated the costs and benefits of preserving fragmenting habitat joining the two ecosystems over the next two decades. We reveal that habitat conversion is driven by human population, existing land-use systems and the road network. We also reveal the probability of habitat conversion to be higher in the least protected area category. Preservation of habitat linking the two ecosystems saving 1640 ha of land from conversion could store between 21,320 and 49,200 t of carbon in the next 20 years, with the potential for generating between US$ 85,280 and 131,200 assuming a REDD+ project is implemented.</p

    Benefits of zebra stripes:behaviour of tabanid flies around zebras and horses

    Get PDF
    <div><p>Averting attack by biting flies is increasingly regarded as the evolutionary driver of zebra stripes, although the precise mechanism by which stripes ameliorate attack by ectoparasites is unknown. We examined the behaviour of tabanids (horse flies) in the vicinity of captive plains zebras and uniformly coloured domestic horses living on a horse farm in Britain. Observations showed that fewer tabanids landed on zebras than on horses per unit time, although rates of tabanid circling around or briefly touching zebra and horse pelage did not differ. In an experiment in which horses sequentially wore cloth coats of different colours, those wearing a striped pattern suffered far lower rates of tabanid touching and landing on coats than the same horses wearing black or white, yet there were no differences in attack rates to their naked heads. In separate, detailed video analyses, tabanids approached zebras faster and failed to decelerate before contacting zebras, and proportionately more tabanids simply touched rather than landed on zebra pelage in comparison to horses. Taken together, these findings indicate that, up close, striped surfaces prevented flies from making a controlled landing but did not influence tabanid behaviour at a distance. To counteract flies, zebras swished their tails and ran away from fly nuisance whereas horses showed higher rates of skin twitching. As a consequence of zebras’ striping, very few tabanids successfully landed on zebras and, as a result of zebras’ changeable behaviour, few stayed a long time, or probed for blood.</p></div
    • …
    corecore